Quantum gas goes below absolute zero: Ultracold atoms pave way for negative-Kelvin materials Reply

See on Scoop.itScience Communication from mdashf

It may sound less likely than hell freezing over, but physicists have created an atomic gas with a sub-absolute-zero temperature for the first time. Their technique opens the door to generating negative-Kelvin materials and new quantum devices, and it could even help to solve a cosmological mystery.

 

Lord Kelvin defined the absolute temperature scale in the mid-1800s in such a way that nothing could be colder than absolute zero. Physicists later realized that the absolute temperature of a gas is related to the average energy of its particles. Absolute zero corresponds to the theoretical state in which particles have no energy at all, and higher temperatures correspond to higher average energies.

 

However, by the 1950s, physicists working with more exotic systems began to realize that this isn’t always true: Technically, you read off the temperature of a system from a graph that plots the probabilities of its particles being found with certain energies. Normally, most particles have average or near-average energies, with only a few particles zipping around at higher energies. In theory, if the situation is reversed, with more particles having higher, rather than lower, energies, the plot would flip over and the sign of the temperature would change from a positive to a negative absolute temperature, explains Ulrich Schneider, a physicist at the Ludwig Maximilian University in Munich, Germany.

 

Schneider and his colleagues reached such sub-absolute-zero temperatures with an ultracold quantum gas made up of potassium atoms. Using lasers and magnetic fields, they kept the individual atoms in a lattice arrangement. At positive temperatures, the atoms repel, making the configuration stable. The team then quickly adjusted the magnetic fields, causing the atoms to attract rather than repel each other. “This suddenly shifts the atoms from their most stable, lowest-energy state to the highest possible energy state, before they can react,” says Schneider. “It’s like walking through a valley, then instantly finding yourself on the mountain peak.”

 

At positive temperatures, such a reversal would be unstable and the atoms would collapse inwards. But the team also adjusted the trapping laser field to make it more energetically favourable for the atoms to stick in their positions. This result, described today in Science, marks the gas’s transition from just above absolute zero to a few billionths of a Kelvin below absolute zero. Wolfgang Ketterle, a physicist and Nobel laureate at the Massachusetts Institute of Technology in Cambridge, who has previously demonstrated negative absolute temperatures in a magnetic system, calls the latest work an “experimental tour de force”. Exotic high-energy states that are hard to generate in the laboratory at positive temperatures become stable at negative absolute temperatures — “as though you can stand a pyramid on its head and not worry about it toppling over,” he notes — and so such techniques can allow these states to be studied in detail. “This may be a way to create new forms of matter in the laboratory,” Ketterle adds.

See on www.nature.com

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s