particles and their properties

If you would like to become a nuclear physicist, what you would like to know about the nucleus first?

A. structure of the nucleus

Every atom consists of a dense positive central core of mass, known as nucleus. Its size is much smaller compared to the size of the atom, nut nonetheless it contains almost all of the mass of the atom.

The nucleus is made of only neutrons and protons. — These are collectively known as nucleons.¬†

Nucleons are not the smallest constituents of matter. — In-fact nucleons are made of different combinations of 3 quarks, of which only two of the quarks can be of the same type.¬†

Combinations of 3 quarks which form into a bound state of material system are known as baryons. We will study about baryons in the last part of this lecture series.

Thus baryons are a naturally occurring collective matter, built from 3 quarks, where the 3 quarks interact among each other, but can’t escape this bound state of formation, even under the impact of tremendous force.

This fact is known as asymptotic freedom, such freedom is only a dream for them, and for us. This is possible in principle, when the distance of separation between them can be made infinite, in order to weaken the existing attractive force between them, to zero.

A Photon has no mass. It can’t rest.

A) A Photon has no mass. B) A implies “It can’t rest”. C) Therefore it doesn’t have rest mass. D) Photon rest mass is zero.

Assertion and reasoning; A is correct. B is correct and follows from A. C is correct, it does follow from B. But D is incorrect it does not follow from A, B, or C. Its erroneous, a sloppy language that has been thought to be correct for ages now.

The trick is to realize there is no property called mass of photon — at-least in the same sense as it is for other particles with mass, therefore no rest mass. To say rest mass is zero is a special value of mass or rest mass. It just doesn’t have rest mass, as it neither has mass, nor rest, which are equivalent formulations, one leads to other. But A, B or C do not lead to D. They are not equivalent way of saying each other. They invalidate each other actually.

Two new Baryons at LHC.

Two new Baryons at LHC.

Two new Baryons at LHCb.
LHCb, the famed experiment at CERN, Switzerland found a year ago two new Baryons. These are important steps in testing the validity of our state of the art understanding of current model of the Physical Universe, mostly in considering the “particle constituents” of the matter around us, and known by the name Standard Model — of Particle Physics.

Atoms with nuclei and electrons. Nucleus has nucleons in it which are two types, protons and neutrons. The protons and neutrons are Baryons with each having two different combination of 3 quarks — uud and udd.

Protons and Neutrons as Baryons, that is an eternal bond of 3 quarks. uud and udd. Note that the spring is the gluon. Much like a spring transmits a mechanical force these gluons have an assigned duty to transfer the strong nuclear forces from one participant to the other.

1. First off it does so by colliding protons with protons at gigantic speeds, at the speed of light. So these protons are 1000 times more energetic than their own mass. If you are 60 kg, your energy is 600 Joule, if you move freely a distance of 1 meter, consider yourself to be thrown so fast that you have 1000 times that energy. Both examples are approximately true.

2. Protons are called Baryons. Anything with 3 quarks in them, as we know them today are called as Baryon. The 3 quarks will never separate into single relationship status. Its a triangular love, in which each partner has their share of love meted out. Sorry particles are decidedly promiscuous. ;) And never break their relations as long as they are bonded this way.

3. These new baryons — 3 quarks in eternal bonding, are about 6 times heavier than proton. SInce protons were bombarded onto each other madly, with energies that are 1000 times bigger than their own mass, the possibility of heavier particles such as these new baryons materialized. So the protons did not break in a way quarks will cry out “I am single again” but rather go into relationships with other quarks and form heavier relationships.

LIGO in India? You must be kidding …

I was pleasantly surprised that this experiment is slated to come up in India, yes, with a whopping 250 million dollars investment into science in India is perhaps the only 2nd instance of massive science euphoria.

And they are both directly or immediately so, in my field of research, although the first one INO isn’t seeming to be coming of age, while collaborations and Physics and engineering as such have been extensively laid out in the ground, the lab the much coveted international particle physics lab that is, hasn’t come.

(Surprise me, if work has already begun in Madurai, we have been struck by paranoia of environment so much that the elephants have the right of way more than the most innocuous science commies out there, pardon me, that’s a pun, no disrespect to elephants, no offense to commies.)