quantum mechanics

Quantum Entanglement .. a short primer !

This fact is inherently, nothing but the concept of Quantum Entanglement. Unlike classical particles which are completely independent of each other the quantum sized objects are not. For physical intuition they are at a very small and subtle level intertwined with each other as if threads are kind of tied onto each other. We can-not toss an electron because the whole concept of one electron completely independent of all other makes sense only when all other electrons are not interacting because they are arbitrarily far away.

3 myths of physics, especially in textbooks.

2. Last year in a text book in Indian High School curriculum, I spotted and corrected with my students, the following:

Myth; there are only 3 quarks that have been detected or FOUND/confirmed so far, in nature.

Its based on a knowledge that was true more than 3 decades ago. All quarks, 6 of them, have been confirmed as hypothesized, the last of them was confirmed 2 decades ago. So there is really no reason why these facts should have been omitted from the text books that are updated every few years as such. Who are our experts?

3. During my freelance research, I have pointed out the following fact within last 3 or 2 years. A recurring myth in very advance texts of physics, concurrently followed in major and wide number of universities around the world, some of the finest texts in the field of particle physics and widely believed to be excellent, which they are nonetheless.

Myth; (particle life time and range of forces) A (force carrier) particle is long range if its mass is zero. Lifetime is the uncertainty that gives rise to an energy which is equivalenced through Einstein’s mass-energy relation and mass being zero, we have an infinite range as range is inversely proportional.

Fact; This is murky waters. Its a manipulation of sorts. Experimentally life times are quite arbitrary, while mass is supposedly fixed. Neutrino has a mean-life from 15 seconds to 10 billion seconds in order of magnitude .. I have hypothesized that’s possible, because it has such a high energy, and given it can’t lose this energy via any possible processes, it must live that long.

Why is the helicity for a mass-less particle Lorentz invariant?

Result; now that photons are mass-less, their energy, momentum, speed, etc are no more variables, in the sense of arbitrariness. They are constants, taking only a few values, but constant in a given situation. But other particles have these properties; arbitrary. So electrons energy and momentum are not fixed, but arbitrary.

But as long as we are considering only elementary particles (that is, we are in a Quantum Zone) eg, electrons, protons, photons, and not nutmegs, soccer balls and airplanes and satellites there is another quantity that is of important consequence that is constant. Spin; whether a mass-less particle or not, spin has the same magnitude for them. that is spin is same for photon, its always 1. Spin for an electron is always 1/2. Spin for proton is always 1/2. Its for this reason photon is called a Boson**. Any thing with spin, 0, 1, 2, etc will be a Boson. Anything with spin 1/2, 3/2 etc will be called Fermion.

Why Bose is not the scientist after whom Higgs is named.

A very few particles (out of 1000s) are named after scientists, eg the so called mu meson was called a Yukawa Meson, although it turned out to be a misnomer. Mu-meson was found to be a lepton, rather than a meson, as was thought by Yukawa and others.

Now called Muon it belongs in the same class that an electron belongs to, leptons, which are both Fermions. Hence initially thought to be a Boson (because all mesons would be bosons) the muon is actually a Fermion (all leptons are Fermions).

Should we say; initially muon was named after Bose, then correctly; after Fermi? That would be HOKUM. Right thing would be to say; it was named after Hideki Yukawa (wrongly as a meson or boson) then it has been named as muon which is now a Fermion. But its still named after Yukawa; given to a misnomer-correction. It can be called Yukawa-Lepton MUON (instead of Yukawa Meson Mu).

Nowhere Bose or Fermi have been the scientists after whom this particle has been named. Bose and Fermi are scientists after whom a principle of physics or nature has been named but not a particle. That would clear any mischievous air.