Young’s Double Slit Experiment. 1

Optics Series Lecture, Lecture – IX.

“Young’s Double Slit Experiment. Coherent Sources and Conditions of Interference” This lecture was delivered on 14th February in a lecture session of 1 and 1/2 hours. This lecture was delivered to Physics elective students. At a later date this is intended as a lecture to honors students as well. The web-version differs slightly from class delivered lectures, in that: any particular idea is explained without reference to what level it must cater to. That means in class lecture will modulate depending on the actual level of student body and their response. An honors student body who would find a particular discourse difficult will be supplied with further simplified versions of the concepts, verbatim. An elective students body which is well prepared would have no problems grasping the fundamentals at a purported level. Its a happy scenario if that is indeed the case.

The concurrent lecture is particularly divided into two parts. The first part pertains to what are coherent sources and what are the sustainable conditions for interference, for such to be observed. The second part leads us to describe in requisite detail the phenomenon of Young’s double slit interference. Note that we have already discussed the phenomenon of interference in our lecture-VII, which was delivered to honors students. We will only passively mention that there are two kinds of interference the so called wave-front-splitting and the amplitude splitting interference. Later on we will discuss any required details of both kinds. Before we do so we will have several interference phenomenon lectures from both types. Young’s double slit interference is an example of the wave-front splitting interference. What happens here is there are two primary or secondary coherent sources and two separate waves interfere at a given observation vantage. Another example of wave-front splitting interference is Fresnel’s bi-prism set-up which we will study soon, in an imminent lecture. For amplitude splitting interference only one wave produces the interference patterns, because the wave amplitude is partially reflected and partially transmitted — or refracted, and both channels meet up somewhere. More…