

WORK PLAN IN PROGRESS

Manmohan Dash

Virginia Tech

(26th May 2004)

OUTLINE

- 1. What Are We Trying To Measure?
- 2. Physics Analysis
 Calculating $N(K_L\pi)$ Calculating $N(K_S\pi)$
- 3. Calibration Analysis
 Calculating $N(K_L\pi\pi)$ Calculating $N(K_S\pi\pi)$

What Are We Trying To Measure?

• We are measuring the following asymmetry in the deacy of D^0

We are measuring the following asymmetry in the deacy of
$$L$$

$$A = \frac{\Delta\Gamma}{2\Gamma_{av}}$$

$$= \frac{(\Gamma_{D^0 \to K_S^0 \pi^0}) - (\Gamma_{D^0 \to K_L^0 \pi^0})}{(\Gamma_{D^0 \to K_S^0 \pi^0}) + (\Gamma_{D^0 \to K_L^0 \pi^0})}$$

$$= \frac{\Delta\mathcal{B}}{2\mathcal{B}_{av}} \text{ as branching fraction } \mathcal{B}_{K_L \pi} \alpha \Gamma_{K_L \pi} \text{ and so on}$$

$$= \frac{N(K_L \pi)/N(K_L \pi + K_S \pi) - N(K_S \pi)/N(K_L \pi + K_S \pi)}{N(K_L \pi)/N(K_L \pi + K_S \pi) + N(K_S \pi)/N(K_L \pi + K_S \pi)}$$

$$= \frac{N(K_L \pi) - N(K_S \pi)}{N(K_L \pi) + N(K_S \pi)}$$

detector efficiency corrected by using decay $D^0 \to (\bar{K^0}\pi)\pi$ via K^{*-} $A = \frac{N(K_L \pi)/\epsilon_{K_L} - N(K_S \pi)/\epsilon_{K_S}}{N(K_L \pi)/\epsilon_{K_L} + N(K_S \pi)/\epsilon_{K_S}}$ $= \frac{N(K_L\pi)/N(K_L\pi\pi)-N(K_S\pi)/N(K_S\pi\pi)}{N(K_L\pi)/N(K_L\pi\pi)+N(K_S\pi)/N(K_S\pi\pi)}$

◆ So we have the following numbers to calculate for this analysis $N(K_L\pi), N(K_S\pi), N(K_L\pi\pi), N(K_S\pi\pi)$

Physics Analysis, calculating $N(K_L\pi)$

- ◆ Create MC samples for $D^0 \to K_L{}^0\pi^0$ and $D^0 \to K_S{}^0\pi^0$ Signal MC $e^+e^- \to c\bar{c} \to charm\ fragmentation \to single\ D^{*+}\ selection \to decay\ table$ Generic MC $e^+e^- \to c\bar{c} \to charm\ fragmentation \to \text{allow generic decay}\ ?\ ?$
- ★ Reconstruct $D^0 \to K_L^0 \pi^0$ (Signal MC) $K_L^0 by \ D^0 \ mass \ constraint, \ E_{ECL} > 300 MeV$ for excluding $Kand \ \pi$ decays in flight $D^0 by \ x_p > 0.6, \ -0.95 < \cos(\angle D^0 k^0) < 0.2$ for excluding combinatorics, random pion backgrounds tag by $D^{*+} \to D^0 \pi^+$ look at D^{*+} mass distribution fit signal and background (to be crosschecked with data later)
- ♦ Reconstruct $D^0 \to (pseudo\ K_L{}^0)\pi^0$ for control Signal MC of $D^0 \to K_S{}^0\pi^0$ is used here do a resolution study of $K_S{}^0andK_L{}^0$ reconstruct $K_S{}^0$ by D^0 mass constraint $K_S{}^0$ direction resolution smeared to match $K_S{}^0$ resolution

Physics Analysis, calculating $N(K_L\pi)$

- ♦ Analyse generic MC sample to study the backgrounds reconstruct $D^0 \to K_L{}^0\pi^0$ tag decays present in sample by evtgen, plot their mass distribution (to get no of background events for each decay and their spectrum) ??? is it correct/useful ??? study the event topology to get the potential background sources ??? device cuts and optimise ???
- Skim data for $D^0 \to K_L{}^0\pi^0$ reconstruct $D^0 \to K_L{}^0\pi^0$, fit signal, background in D*+ mass obtain $N(K_L\pi)$ and cross-check with signal MC

Physics Analysis, calculating $N(K_S\pi)$

- Reconstruct $D^0 \to K_S{}^0\pi^0$ (Signal MC) $K_S{}^0$ from mdst-vee2, apply track quality cuts same cuts on D^0 etc as in case of $D^0 \to K_L{}^0\pi^0$ fit signal and background for crosschecking with data later
- ♦ Analyse generic MC sample to study the backgrounds same procedure as in case of $D^0 \to K_L{}^0\pi^0$
- ♦ Skim data for $D^0 \to K_S{}^0\pi^0$ reconstruct $D^0 \to K_S{}^0\pi^0$, fit signal, background in D*+ mass obtain N($K_S\pi$) and cross-check with signal MC

Calibration Analysis, calculating $N(K_L\pi\pi)$

- ◆ Signal and Generic MC for $D^0 \to K_L \pi \pi$ and $D^0 \to K_S \pi \pi$ via K^{*-} reconstruct $D^{*+} \to D^0 \pi^+, D^0 \to K^{*-} \pi^+, K^{*-} \to K_L \pi^-$ (signal MC) apart from cuts for D^0 and K_L etc invariant mass cut on K^{*-} tag by $D^{*+} \to D^0 \pi^+$ look at D^{*+} mass distribution fit signal and background (to be crosschecked with data later)
- ★ Reconstruct $D^0 \to (pseudo\ K_L{}^0\pi)\pi$ for control use results from resolution study as earlier
- ◆ Do a background study in the generic MC sample as earlier device and optimise cuts
- ♦ Skim data for $D^0 \to K_L \pi \pi$ reconstruct $D^0 \to K_L \pi \pi$, fit signal, background in D*+ mass obtain N($K_L \pi \pi$) and cross-check with signal MC

Calibration Analysis, calculating $N(K_S\pi\pi)$

- ★ Reconstruct $D^{*+} \to D^0 \pi^+, D^0 \to K^{*-} \pi^+, K^{*-} \to K_S \pi^-$ (signal MC) invariant mass cut on K^{*-} tag by $D^{*+} \to D^0 \pi^+$ look at D^{*+} mass distribution fit signal and background and crosscheck with data later
- ◆ Do a background study in the generic MC sample as earlier device and optimise cuts
- ♦ Skim data for $D^0 \to K_S \pi \pi$ reconstruct $D^0 \to K_S \pi \pi$, fit signal, background in D*+ mass obtain N($K_S \pi \pi$) and cross-check with signal MC