List of practicals in Nuclear and Particle Physics (DSE-II) in Scilab.

- 1) Nuclear Radius. Plot nuclear radii as a function of its atomic mass number. That is plot R vs A. Since nucleon density is constant over the nucleus (nucleon are uniformly distributed over the nucleus) $R = R_0 A^{1/3}$. Take R₀ = 1.2 fm.
- 2) Nuclear Charge Distribution. Plot the following nuclear charge distribution: $\rho = \rho_0 e^{-\ln(2)(\frac{r}{R})^2}$. That is plot ρ/ρ_0 with **r**, **r** given in units of R, the mean nuclear radius; $R_0 A^{1/3}$.
- **3)** Nuclear Form Factor. Evaluate the nuclear form factor F(q) based on the above charge distribution, $\rho = \rho_0 e^{-\ln(2)\left(\frac{r}{R}\right)^2}$. Plot the form factor F(q) as a function of q; where q is the change in momentum due to scattering, $F(q) = \frac{4\pi}{a} \int \sin(qr')\rho(r')r'dr'.$
- 4) Mass Parabola. The minimum atomic number in the mass parabola is given by $z_{\min} \simeq \frac{A}{2} \left(1 + \frac{1}{4} A^{\frac{2}{3}} \frac{a_c}{a_{sym}} \right)^{-1}$. Plot z_{\min} vs A. Take $a_c = 0.72$ MeV and $a_{sym} = 23$ MeV. Do you find $z_{\min} \sim A/2$ for small A and < A/2 for large A?
- 5) Semi-Empirical Mass Formula. Plot B/A vs A for any Z. (Say Z = 56)
 - $B = a_{v}A a_{s}A^{\frac{2}{3}} a_{c}Z(Z-1)A^{-\frac{1}{3}} \frac{a_{sym}(A-2Z)^{2}}{A} + \delta$. Take $a_{v} = 15.5$ MeV, $a_{s} = 16.8$ MeV, $a_{c} = 0.72$ MeV, $a_{sym} = 23$ MeV, $a_{p} = 34$ MeV and $\delta = 0$ for odd A, $\delta = a_{p}A^{-3/4}$ for even N, even Z and $\delta = -a_{p}A^{-3/4}$ for odd N, odd Z. Plot separately: a. volume terms only, b. volume + surface terms, c. volume + surface + coulomb terms, and finally d. volume + surface + coulomb + symmetry terms.
- 6) Nuclear Potential Energy. Plot V assuming a point nucleus and assuming uniform spherical charge distribution. $V_{pc} = -\frac{Ze^2}{4\pi\epsilon_0}\frac{1}{r}$. $V_{sph} =$

 $-\frac{Ze^2}{4\pi\epsilon_0}\frac{1}{R}\left\{\frac{3}{2}-\frac{1}{2}\left(\frac{r}{R}\right)^2\right\}$. For convenience treat $\frac{e^2}{4\pi\epsilon_0}=1$ and chose scale of r in suitable range of R.

- 7) Range of Force. Plot Range of a force R vs mass of its carrier particle $m_x c^2$. $R = c\Delta t = \frac{hc}{2\pi m_x c^2} = \frac{197.3 \ MeV.fm}{m_x c^2}$.
- 8) Mean radius squared. Plot mean of radius squared vs A, (i.e. expectation value of radius squared vs A) for the nucleus, assuming nucleus as a uniform charged sphere. $< r^2 > = \frac{3}{5}R^2 = \frac{3}{5}R_0^2A^{\frac{2}{3}}$.
- 9) Gaussian Probability Distribution. Plot the Gaussian probability distribution for a standard deviation σ = 0.01 and mean μ = 0.1. **P** =

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

10) Kinetic energy of alpha particle. Plot Kinetic energy of alpha particle T_{α} vs mass number A. Assume Q value is 5 MeV. $T_{\alpha} = Q \left(1 - \frac{4}{4}\right)$.

- 11) Neutrino Mass. Plot variation in Q if $m_v c^2$ varies between 0.01 to 0.08 MeV. $Q = 0.782 \ MeV m_v c^2$. For the decay $n \rightarrow p + e^2 + anti-v$.
- **12) Power radiated by accelerated charge.** Plot power radiated (P) by an electric dipole of unit strength, depicted by the following relation, vs

frequency,
$$\omega$$
. $oldsymbol{P}=rac{1}{12\pi\epsilon_0}rac{\omega^4}{c^3}oldsymbol{d}^2.$

13) Scattering Cross Section. Plot Rutherford differential scattering cross section vs sine of scattering angle, θ . $\sigma_{diff} =$

$$\frac{d\sigma}{d\Omega} = \left(\frac{zZe^2}{4\pi\epsilon_0}\right)^2 \left(\frac{1}{4T_a}\right)^2 \frac{1}{\sin^4 \frac{\theta}{2}}.$$
 Use KE of alpha particle = T_a = 10 MeV.

Use Gold nucleus for Z.

14) Fusion Reaction. Plot plasma Debye length L_D vs particle concentration n. Take n in units of 10^{27} /m³. Mean KE per particle = 10 keV. T at the order of 10^8 K. $L_D = \frac{4\pi\epsilon_0}{e^2} \sqrt{\frac{kT}{4n}}$. **15)** Synchrotron Condition. Plot v (frequency) vs B (magnetic field) for protons at radius r = 0.25 m. $v = \frac{eBc^2}{2\pi} \sqrt{e^2 r^2 B^2 c^2 + m^2 c^4}$.