List of practicals in Nuclear and Particle Physics (DSE-II) in Scilab.

1) Nuclear Radius. Plot nuclear radii as a function of its atomic mass number. That is plot R vs A. Since nucleon density is constant over the nucleus (nucleon are uniformly distributed over the nucleus) $R=R_{0} \boldsymbol{A}^{\mathbf{1 / 3}}$. Take $\mathrm{R}_{0}=1.2 \mathrm{fm}$.
2) Nuclear Charge Distribution. Plot the following nuclear charge distribution: $\rho=\rho_{0} e^{-\ln (2)\left(\frac{r}{R}\right)^{2}}$. That is plot ρ / ρ_{0} with r, r given in units of R, the mean nuclear radius; $R_{0} A^{1 / 3}$.
3) Nuclear Form Factor. Evaluate the nuclear form factor $F(q)$ based on the above charge distribution, $\boldsymbol{\rho}=\boldsymbol{\rho}_{\mathbf{0}} \boldsymbol{e}^{-\ln (2)\left(\frac{r}{R}\right)^{2}}$. Plot the form factor $\mathrm{F}(\mathrm{q})$ as a function of q; where q is the change in momentum due to scattering, $F(q)=\frac{4 \pi}{q} \int \sin \left(q r^{\prime}\right) \rho\left(r^{\prime}\right) r^{\prime} d r^{\prime}$.
4) Mass Parabola. The minimum atomic number in the mass parabola is given by $\boldsymbol{z}_{\min } \simeq \frac{A}{2}\left(\mathbf{1}+\frac{1}{4} A^{\frac{2}{3}} \frac{a_{c}}{a_{\text {sym }}}\right)^{-\mathbf{1}}$. Plot $\mathrm{z}_{\text {min }}$ vs A . Take $\mathrm{a}_{\mathrm{c}}=0.72 \mathrm{MeV}$ and $a_{\text {sym }}=23 \mathrm{MeV}$. Do you find $z_{\text {min }} \sim A / 2$ for small A and $<A / 2$ for large A ?
5) Semi-Empirical Mass Formula. Plot B / A vs A for any Z. (Say $Z=56$) $\boldsymbol{B}=\boldsymbol{a}_{\boldsymbol{v}} \boldsymbol{A}-\boldsymbol{a}_{\boldsymbol{s}} \boldsymbol{A}^{\frac{2}{3}}-\boldsymbol{a}_{\boldsymbol{c}} \boldsymbol{Z}(\boldsymbol{Z}-\mathbf{1}) \boldsymbol{A}^{-\frac{1}{3}}-\frac{\boldsymbol{a}_{\text {sym }}(\boldsymbol{A}-\mathbf{2 Z})^{2}}{\boldsymbol{A}}+\boldsymbol{\delta}$. Take $\mathrm{a}_{\mathrm{v}}=15.5 \mathrm{MeV}$, $a_{s}=16.8 \mathrm{MeV}, a_{c}=0.72 \mathrm{MeV}, a_{\text {sym }}=23 \mathrm{MeV}, a_{p}=34 \mathrm{MeV}$ and $\delta=0$ for odd $A, \delta=a_{p} A^{-3 / 4}$ for even N, even Z and $\delta=-a_{p} A^{-3 / 4}$ for odd N, odd Z. Plot separately: a. volume terms only, b. volume + surface terms, c. volume + surface + coulomb terms, and finally d. volume +surface + coulomb + symmetry terms.
6) Nuclear Potential Energy. Plot V assuming a point nucleus and assuming uniform spherical charge distribution. $\boldsymbol{V}_{\boldsymbol{p c}}=-\frac{Z e^{2}}{4 \pi \epsilon_{0}} \frac{\mathbf{1}}{r} \cdot \boldsymbol{V}_{\boldsymbol{s p h}}=$
$-\frac{Z e^{2}}{4 \pi \epsilon_{0}} \frac{1}{R}\left\{\frac{3}{2}-\frac{1}{2}\left(\frac{r}{R}\right)^{2}\right\}$. For convenience treat $\frac{e^{2}}{4 \pi \epsilon_{0}}=1$ and chose scale of r in suitable range of R.
7) Range of Force. Plot Range of a force R vs mass of its carrier particle $\mathrm{m}_{x} \mathrm{c}^{2} . \boldsymbol{R}=\boldsymbol{c} \Delta t=\frac{\boldsymbol{h} \boldsymbol{c}}{2 \pi m_{x} c^{2}}=\frac{197.3 \mathrm{MeV} \cdot \mathrm{fm}}{m_{x} c^{2}}$.
8) Mean radius squared. Plot mean of radius squared vs A, (i.e.
expectation value of radius squared vs A) for the nucleus, assuming nucleus as a uniform charged sphere. $<r^{2}>=\frac{3}{5} R^{2}=\frac{3}{5} R_{0}^{2} A^{\frac{2}{3}}$.
9) Gaussian Probability Distribution. Plot the Gaussian probability distribution for a standard deviation $\sigma=0.01$ and mean $\mu=0.1 . \boldsymbol{P}=$ $\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$.
10) Kinetic energy of alpha particle. Plot Kinetic energy of alpha particle T_{α} vs mass number A. Assume Q value is $5 \mathrm{MeV} . \boldsymbol{T}_{\boldsymbol{\alpha}}=\boldsymbol{Q}\left(\mathbf{1}-\frac{4}{A}\right)$.
11) Neutrino Mass. Plot variation in Q if $m_{v} c^{2}$ varies between 0.01 to $0.08 \mathrm{MeV} . \boldsymbol{Q}=\mathbf{0 . 7 8 2} \mathbf{M e V}-\boldsymbol{m}_{\boldsymbol{v}} \boldsymbol{c}^{\mathbf{2}}$. For the decay $\mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+$anti- ν.
12) Power radiated by accelerated charge. Plot power radiated (P) by an electric dipole of unit strength, depicted by the following relation, vs frequency, $\omega . P=\frac{1}{12 \pi \epsilon_{0}} \frac{\omega^{4}}{c^{3}} d^{2}$.
13) Scattering Cross Section. Plot Rutherford differential scattering cross section vs sine of scattering angle, $\theta . \sigma_{\text {diff }}=$ $\frac{d \sigma}{d \Omega}=\left(\frac{\mathrm{zZe}^{2}}{4 \pi \epsilon_{0}}\right)^{2}\left(\frac{1}{4 T_{a}}\right)^{2} \frac{1}{\sin ^{4} \frac{\theta}{2}}$. Use KE of alpha particle $=\mathrm{T}_{\mathrm{a}}=10 \mathrm{MeV}$.
Use Gold nucleus for Z .
14) Fusion Reaction. Plot plasma Debye length L_{D} vs particle concentration n . Take n in units of $10^{27} / \mathrm{m}^{3}$. Mean KE per particle $=10 \mathrm{keV}$.
T at the order of $10^{8} \mathrm{~K} . \boldsymbol{L}_{\boldsymbol{D}}=\frac{4 \pi \epsilon_{0}}{e^{2}} \sqrt{\frac{k T}{4 n}}$.
15) Synchrotron Condition. Plot v (frequency) vs B (magnetic field) for protons at radius $\mathrm{r}=0.25 \mathrm{~m} . \boldsymbol{v}=\frac{\boldsymbol{e} \boldsymbol{B} \boldsymbol{c}^{2}}{2 \boldsymbol{\pi}} \sqrt{\boldsymbol{e}^{2} \boldsymbol{r}^{2} \boldsymbol{B}^{2} \boldsymbol{c}^{2}+\boldsymbol{m}^{2} \boldsymbol{c}^{4}}$.
