# Inherent ability = difficulty * accomplishment. 2

All of Physics is this “Inherent ability = difficulty * accomplishment”. Thats just intuitive but can easily be seen to correspond mathematically with the Principle of least action.

First the edifice: whats the problem? The problem is given you move in straight line when every direction is same around you, which direction will you chose? While you are waiting for a good answer from astrologers intelligent people already give a good hint. Think you have some inherent ability which is fixed.

fixed: which changes only if estimated wrong.

That inherent ability is actually action. Accomplishments are adjusted for difficulties, you waded through a swamp 5 meters you would have accomplished in sand 8 meters with that given inherent ability called action. Because action is abstract we have been sticking to time and path-length, but they are not as fundamental, they are merely specifics. More…

# A c++ code for calculating pi value. Reply

Finally I am successful in calculating pi value — less than 0.3% error, by using random number generation. Although my computer needs some fixation on its compiler or path definition etc, there are very good online compilers which helps in testing and running c++ codes: try the given link.

OUTPUT
Computing the value of pi using std::rand()
Enter number of trials: 10000
Enter number of random (x,y) points per trial: 10
pi = 3.14376 +- 0.00519107
average – exact = 0.00216735
CPU time = 0.004027 secs

Here is the code I found by searching a good deal on the web. Yes I did tinker around but only because my own compiler (Turbo C++ on windows 10, 64 bits) was throwing some exceptions on the included headers.

#include
#include
#include
#include
//#include
using namespace std;

double pi_estimate(const unsigned long points) More…

# Schrodinger Equation; Concepts and Problems in Quantum Mechanics. Reply

A long and technical discourse on Quantum Wave Function.

A 64 slide presentation styled discourse on the Quantum Wave Function. It consists of detailed solution of 5 important and interesting problems, apart from a threadbare discussion of the concepts.

# Addendum to Coriolis Force; Definition of Centripetal Force. 2

We need to understand first that Force can be categorized into two types. One is called tangential or collinear force. This component of the force is always along the direction of motion and changes speed of an object. It can change direction once the velocity of the object has become zero. Its NOT centripetal force. It can never make an object go in a plane or 3 D trajectory, as the motion is limited to only one dimension. The object can only go back and forth.

Now look at the other component. Its called a radial force. Its always perpendicular to the direction of motion. This force is called centripetal force, always. Note that its different from what we call central forces.

In consequence, both tangential and radial forces can be central. More…

# Quantum Entanglement .. a short primer ! Reply

This fact is inherently, nothing but the concept of Quantum Entanglement. Unlike classical particles which are completely independent of each other the quantum sized objects are not. For physical intuition they are at a very small and subtle level intertwined with each other as if threads are kind of tied onto each other. We can-not toss an electron because the whole concept of one electron completely independent of all other makes sense only when all other electrons are not interacting because they are arbitrarily far away. More…

# This year’s Nobel prize in Chemistry. Reply

What happens when some UV falls on biological molecules? (or any kind) some of these molecules like the wooden pole absorb the energy and there still remains energy which they can emit as visible light. So the UV light kicks the molecules and the molecules in turn emit visible light. This implies that the UV wavelength that the molecules absorbed energy at are very small compared to the wavelength at which they emit visible light. This is always the case.

When we say some materials are fluorescent it means they absorbed higher energy and emitted lower energy radiations of colorful light.

But this has a great deal of application apart from its theoretical interest. More…