Fresnel’s Bi-prism: measurement of wavelength of light. 1

Optics Series Lecture, Lecture – XI.

“Fresnel’s Bi-prism: measurement of wavelength of light by it.” This lecture was delivered on 16th February in a lecture session of 1 and 1/2 hours. This lecture was delivered to Physics elective students and later to honors students. This does not strictly pertain to 1 and 1/2 hours of regular lecturing session that we have mostly been employing. Thats because it was created with another part which can be optionally appended to other related subject matter. In the web-version thats what we will do. Our guiding principle is more in line with the honors course, where the subject matter is quite extensive and deep which brings more flexibility and choices into the lecture compositions.

Today we will discuss another interesting interference set-up, now that we have discussed the Young’s double slit experiment, in lecture – IX. A few words about the general mechanism behind interference. There are two kinds of interference basically that we will be discussing in our lectures. We discussed the Young’s DS interference pattern based on our understandings of intensity or irradiance patterns that we studied here: lecture – VII. Interference is sustained and visible if the corresponding sources of light are coherent among themselves, that is, if the sources have phase differences that are not arbitrarily or abruptly changing, as a consequence we can safely assume the phase differences are constant and therefore predictable. Incoherent light makes this impossible. Incoherent light is that light source whose production itself is arbitrary and abrupt and unpredictable, hence nothing can be definitively said on its phase, as a result the coherence is only short lived. If two light sources are so generated that their respective coherence time (or coherence length) are well within each others span, they are said to be coherent light. More…

The entangled Universe .. 3

There has been a very interesting and permeating discussion going on about “Quantum Entanglement” and any imperceptible but conceptual connection it might have with “Pauli Exclusion Principle”. This has been started by Brian Cox so if you win over him you can come with “who started first?”. … An entangled electron or any quantum particle is basically thought of as a few electron system. It is for a special reason. In any case there must at-least two electrons as far apart as possible for entanglement to be realized as a quantum mechanical “phenomena” is greatly misunderstood and its implications unnecessarily blown up. More…