Can a black-hole be created on earth by LHC?

This post belongs to the eschaton theme. Which means a small and swift blog post just to do justice to something that can’t be made comprehensively large by any reason, at the moment. 

Read the linked news article which giving excerpts from a book by the famed Martin Rees which I haven’t read, nonetheless which sound very tenuous on the scientific merit its purported to be based on, claims that particle physics experiments can create black-hole catastrophes on earth in the very unfortunate event that something goes wrong.

Here is my initial reaction to the article. 

“apocalypse mongering”

Earth’s Schwarzschild radius is less than 1 cm. What that means is earth needs to be compressed into a sphere of that radius with its current given mass, for it to turn into a black-hole.

The hinterland of Particle Physics

Particle Physics is collectively an effort to study the exciting world of subatomic particles and the nature of their interaction. By subatomic we mean anything that happens within the atom or below and not above. The implications could cover as much above, as it would be entailed by the precincts of natural laws.

eg If a process corresponds to as big a size as is a micro-gram, its evidently not subatomic size in length dimension. The subatomic size by its definition of length scale would correspond to a femto-meters. But the given process is subatomic, while the result of having a size of micro-gram would not be.

Hence while the size of the subatomic entity can roughly be put by a femto meter, nonetheless a particle of the size of pico-meter might find relevance in the study of subatomic processes due to such eerie connections. For another matter a micro-gram is the unit of mass and not that of magnitude of distance.

Solutions to Irodov problems. Chapter 1.1

Problems In General Physics, 
I.E. Irodov
Part-I Physical Fundamentals in Mechanics.
Chapter 1.1 Kinematics.  
10 interesting problems in elementary mechanics
This post intends to provide 40 interesting problems in elementary mechanics from IE Irodov, Problems in general physics that I solved in last couple weeks. Note that another 30 problems (additional 12 at hand) which has been solved will be uploaded after they are scanned, shortly.

Basic Concepts.
In this class today we will discuss the subject of “kinematics” briefly and solve some problems, based on the same. 

The motion of objects are studied under the heading “mechanics”.

♣ Mechanics is called “kinematics” if we study about the “nature of motion” without regard to what factors are causing such motion. 

♣ In addition to kinematics, when we focus our attention to study the factors that cause motion, such is named as dynamics. 

In kinematics today we will discuss a few problems that will cover the topics of …

How to add speeds; Galileo and Einstein won’t agree.

How to calculate the speed of anything, when their speed becomes closer to the speed-of-light. 
This article was originally a comment in the linked article;  Why Nothing Moves Faster Than Light.

— In order to correct the comment I have made earlier  ” unless something is completely mass-less in its rest-frame ” I also add the following. This is a fact which I have realized lately — or rather trapped myself to commit an inconsistent remark, by following the same comment in making other remarks elsewhere. 

But it’s better late than never to realize; when something is mass-less, it will never have a rest-frame, because by Einstein’s transformation rules, known as Theory of Relativity, to be consistent, a mass-less particle will always move at the speed of light c, no matter which frame we are looking at it from. This then leads to the velocity addition formula of Einstein.

Now we will discuss in a slightly more detail the two kind of velocity addition formula, one prior to Einstein and one that came from Einstein’s work. 

Prior to Einstein. 
According to Newton and Galileo ( Galileo Project ), known by a name Galilean Relativity, the following follows; if C moves at speed

Optical Path and Fermat’s Principle.

We can see ourselves in mirror and take our mirror reflected selfie as a consequence of Fermat’s Principle, the topic of discussion of the blog.

In the last few weeks I am trying to understand why light traverses straight lines and why it refracts. The other day I saw a little mug floating inside a bucket full of water. Inside water any object would look shortened, a phenomena known as refraction. That’s because light rays would “bend” inside water (towards a direction where they have to take a shorter path) as their speed must reduce, given to the fact that in the same time in a rarer medium light would have traveled a longer distance in the exact same time, which is no longer possible due to the crowd of molecules and subatomic ghetto that it meets along its way.

Falling Masses, the Big Picture.

This lecture note will make your life ten-fold easier in the scope of the problems it addresses. Consider it a talisman. I discovered this a couple of weeks ago when I was solving these problems for my own conceptual understanding. So I waited till I can completely enunciate the big picture. When I confirmed that its valid for all the following problems I made this note and sharing with you.

There is nothing there.

According to classical mechanics — from 400 year old knowledge of physics, space and time have been considered to be separate entities but not fundamental. Space and time were not considered fundamental quantities as these parameters did not have the mandate to change physical laws of nature. They were merely the tools of the mind or the more aptly the conscious mind. They help us visualize but not dictate what ought to happen.

Gravitational Anomaly.

Gravitational Anomaly: (asked by a student for very simple explanation)

Basically it means the new laws of physics known as Quantum Mechanics invalidates the sanctity of nature’s principles or laws (that is QM brings exceptions to the validity of the physical laws of nature itself)

Let us discuss this in simpler ideas from the basics only.

Remember the most basic physics, that of principle of conservation of energy and the principle of conservation of (linear) momentum.

In the more rigorous formalism of physics these two principles emanate (that is derivable) from two ideas of symmetry. In-fact every conservation principle of physics are manifestations of a corresponding principle of symmetry and vice-a-versa (also every symmetry must correspond to a conservation law). This general idea of connection between conservation laws and symmetry is collectively known as Noether’s theorem and is a central underpinning in all of today’s conceptual physics.

Wrong question in GATE 2018 physics?

I think the above question asked in GATE 2018 (physics) is wrong.

Any vector has two components. The component perpendicular to the parity axis has even parity and the parallel component to the axis has odd parity.

The opposite is true for axial vectors.

E, A vectors.
B, L axial vectors.

The correct answer per gate exam body is E, A. Why not B and L? It’s an arbitrary situation and perpendicular components of these fields will have odd parity.

1 2 3 179