Interference of two plane harmonic waves. 5

Optics Series Lecture, Lecture – VII.

“Conditions of interference, Interference of two plane harmonic waves.” This lecture was delivered on 7th February in a lecture session of 1 and 1/2 hours. This lecture was delivered to Physics elective students but intended as a lecture towards Honors students at a later date.

Electromagnetic Waves.

Light is an electromagnetic wave. In-fact its a transverse electromagnetic wave which means the oscillation of E and B fields produces light which propagates in a direction that is perpendicular to the plane that contains the E and B fields. In other words E, B and k the vector that denotes the direction of light propagation, are mutually perpendicular vectors. We will study these details in a later intended lecture. EM waves are not only transverse waves but also vector waves, that is; E and B are vector fields whose undulation is summarized as light.

Light is a general name for all EM waves but visible light is that particular part of EM waves which has frequency of wave such that the wavelength varies from approximately 400 – 700 nm. In vacuum — only in vacuum, light always moves at a fixed speed: namely 3×108 m/s. Therefore light whose wavelength lies between 400 – 700 nm is called as visible light: we can write in vacuum c = νλ.

Light as a transverse wave phenomenon of vector fields is comprehensively described by four equations known as Maxwell’s Equations. More…